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Abstract In this paper we study the statistical properties of convex hulls of N random points
in a plane chosen according to a given distribution. The points may be chosen independently
or they may be correlated. After a non-exhaustive survey of the somewhat sporadic litera-
ture and diverse methods used in the random convex hull problem, we present a unifying
approach, based on the notion of support function of a closed curve and the associated
Cauchy’s formulae, that allows us to compute exactly the mean perimeter and the mean area
enclosed by the convex polygon both in case of independent as well as correlated points.
Our method demonstrates a beautiful link between the random convex hull problem and the
subject of extreme value statistics. As an example of correlated points, we study here in
detail the case when the points represent the vertices of n independent random walks. In the
continuum time limit this reduces to n independent planar Brownian trajectories for which
we compute exactly, for all n, the mean perimeter and the mean area of their global convex
hull. Our results have relevant applications in ecology in estimating the home range of a
herd of animals. Some of these results were announced recently in a short communication
[Phys. Rev. Lett. 103:140602, 2009].
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1 Introduction

Convex sets are defined by the property that the line segment joining any two points of the
set is itself fully contained in the set. In the physical world, convex shapes are encountered in
many instances, from convex elements that ensure acoustic diffusion in concert halls [134],
to crystallography, where the so-called Wulff construction leads, in the most general case,
to a convex polyhedron whose facets correspond to crystal planes minimizing the surface
energy [52]. Also, recent work in neuroscience indicates that the human brain seems better
able to distinguish between two distinct shapes when these are both convex [80], which is
particularly interesting since convexity properties are widely used in computer-aided image
processing, in particular for pattern recognition [5]. Such applications would be limited if
they were restrained to intrinsically convex shapes; but it is not the case, since it is possible to
“approximate”, in some sense, a non-convex object by a convex one: pick, among all convex
sets that can enclose a given object, the smallest one in terms of volume. This is called its
convex hull, and comparing convex hulls can be a viable mean of comparing the shapes of
complex patterns such as proteins and docking sites [118]. Convex hulls thus attract much
interest, both for the algorithmic challenges set by their computation [17, 51, 53, 74, 83, 88,
122, 143, 153, 159] and for their applications [5, 118, 146, 160, 161].

Random convex hulls are the convex hulls of a set of N random points in a plane chosen
according to some given distribution. The points may be chosen independently each from an
identical distribution, e.g., from a uniform distribution over a disk. Alternatively, the points
may actually be correlated, e.g., they may represent the vertices of a planar random walk of
N steps. For each realization of the set of points, one can construct the associated convex
hull. Evidently, the convex hull will change from one realization of points to another. Natu-
rally, all geometric characteristics of the convex hull, such as its perimeter, area, the number
of vertices etc. also become random variables, changing their values from one realization
of points to another. The main problem that we are concerned here is to compute the sta-
tistics of such random variables. For example, given the distribution of the points, what is
the distribution of the perimeter or the area of the associated convex hull? It turns out that
the computation of even the first moment, e.g., the mean perimeter or the mean area of the
convex hull is a nontrivial problem.

This question has aroused much interest among mathematicians over the past 50 years
or so, and has given rise to a substantial body of literature some of which will be surveyed
in Sect. 2. The methods used in this body of work turn out to be diverse and sometimes
specific to a given distribution of points. It is therefore important to find a unified approach
that allows one to compute the mean perimeter and area, both in the case of independent
points as well as when they are correlated such as in Brownian motion. The main purpose of
this paper is to present such an approach. This approach is built on the works of Takács [152],
Eddy [54] and El Bachir [58] and the main idea is to use the statistical properties of a single
object called the ‘support function’ which allows us, using the formulae known as Cauchy,
Cauchy-Crofton or Cauchy-Barbier formulae [7, 11, 37, 43, 138, 155], to compute the mean
perimeter and the mean area of random convex hulls. This unified approach allows us to
reproduce the existing results obtained by other diverse approaches, and in addition also
provides new exact results, in particular for the mean perimeter and the mean area of n

independent planar Brownian motions (both for open and closed paths), a problem which
has relevant applications in ecology in estimating the home range of a herd of animals. The
latter results were recently announced in a short letter [125].

Our unified approach using Cauchy’s formulae also establishes an important link to the
subject of extreme value statistics that deals with the study of the statistics of extremes in
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samples of random variables. In the random convex hull problem when the sample points
are independent and identically distributed (i.i.d.) in the plane, then the associated extreme
value problem via Cauchy’s formulae is the classical example of extreme value statistics
(EVS) of i.i.d. random variables that is well studied, has found a lot of applications ranging
from climatology to oceanography and has a long history [40, 69, 76, 77]. For example,
in the physics of disordered systems the EVS of i.i.d. variables plays an important role in
the celebrated random energy model [20, 49]. In contrast, when the points are distributed
in a correlated fashion, as in the case where they represent the vertices of a random walk,
our approach requires the study of the distribution of the maximum of a set of correlated
variables, a subject of much current interest in a wide range of problems (for a brief review
see [110]) such as in fluctuating interfaces [32, 78, 79, 105, 106, 123, 126, 140], in logarith-
mically correlated Gaussian random energy models for glass transition [36, 63, 64], in the
properties of ground state energy of directed polymers in a random media [46, 50, 85, 96,
108, 148] and the associated computer science problems on binary search trees [14, 89, 109]
and the biological sequence matching problems [112], in evolutionary dynamics and inter-
acting particle systems [15, 91, 111, 135, 149], in loop-erased random walks [4], in queuing
theory applications [86], in random jump processes and their applications [39, 41, 107], in
branching random walks [23, 27, 117], in condensation processes [59], in the statistics of
records [70, 90, 97, 115] and excursions in nonequilibrium processes [65, 71, 147], in the
density of near-extreme events [136, 137], and also in various applications of the random
matrix theory [19, 47, 48, 92, 104, 114, 120, 141, 154, 156]. Here, our approach establishes
yet another application of EVS, namely in the random planar convex hull problem.

The paper is organized as follows. In Sect. 2, we provide a non-exhaustive survey of
the literature on random convex hulls. In Sect. 3, we introduce the notion of the ‘support
function’ and the associated Cauchy formulae for the perimeter and the area of any closed
convex curve. This section also establishes the explicit link to extreme value statistics. We
show in Sect. 4 how to derive the exact mean perimeter and the mean area of the convex hull
of N independent points using our approach. Section 5 is fully devoted to the case when
the points represent the vertices of a Brownian motion, a case where the points are thus
correlated. Finally we conclude in Sect. 6 with some open questions. Some of the details are
relegated to the Appendices.

2 A (Non-exhaustive) Review of Results on Random Convex Hulls

In this section we briefly review a certain number of results on the convex hull of randomly
chosen points. This review is of course far from exhaustive and we choose only those results
that are more relevant to this work. They are presented in a chronological order and at the
end of the section we summarize in a table the results that are particularly relevant to the
present work.

– In his book on random processes and Brownian motion (published in 1948) [101], P. Lévy
mentions, in a few paragraphs and mainly heuristically the question of the convex hull
of planar Brownian motion: “This contour [that of the convex hull of planar Brownian
motion] consists, except for a null-measure set, in rectilinear parts.”

– More than ten years later, in 1959, J. Geffroy seems to be the first to publish results
pertaining to the convex hull of a sample of random points drawn from a given distrib-
ution [66], specifically N points chosen in R

2 according to a Gaussian normal distribu-
tion f . He shows that if one denotes
– by ∂CN the boundary of the convex hull of the sample,
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– by �N the ellipsoid given by the equation1 f (x, y) = 1
N

,
– by �N the distance between ∂CN and �N ,
– and by �N the largest possible radius of an open disk whose interior lies inside the

convex hull but contains none of the sample points,
then almost surely:

�N and �N −→
N→∞

0 (1)

In other words, the convex hull of the sample “tends” to the ellipsoid given by f (x, y) =
1
N

. Geffroy generalizes this result to R
d , d ≥ 1, in 1961 [67].

– In 1961 F. Spitzer and H. Widom study the perimeter LN of the convex hull of a ran-
dom walk represented by sums of random complex numbers S0 = 0, . . . , Sk = Z1 + Z2 +
· · · + Zk,1 ≤ k ≤ N , where the Zk are i.i.d. random variables. By combining an identity
discovered by M. Kác with a formula due to A.-L. Cauchy (which is used here for the
first time in the context of random convex hulls), they derive an elegant formula for the
expectation [151]:

E(LN) = 2
N∑

k=1

E(|Sk|)
k

. (2)

The asymptotic behavior of E(LN) is studied in two different cases:

1. Writing Zk = Xk + iYk and taking E(Xk) = E(Yk) = 0, E(X2
k ) = a2, E(Y 2

k ) = b2, and
E(XkYk) = ρab, one has:

E(LN) ∼
N→∞

4c
√

N, (3)

where c(a, b,ρ) does not depend on N .
2. Taking Zk = Xk + i with E(Xk) = μ and E((Xk − μ)2) = σ 2, one has:

E(LN) ∼
N→∞

2N
√

1 + μ2 + σ 2

(1 + μ2)
3
2

logN, (4)

which expresses the excess of E(LN) over its smallest possible value 2N
√

1 + μ2.

– In the same year, and still for very general random walks viewed as a sum of N vectors
in the complex plane S0 = 0, . . . , Sk = Z1 + Z2 + · · · + Zk,1 ≤ k ≤ N , G. Baxter [13]
establishes three formulae involving respectively
– the number FN of edges of the convex hull of the random walk,
– the number KN of steps Zk from the walk which belong to the boundary of the convex

hull,

1For instance, in the Gaussian case:

f (x, y) = exp

[
−x2 + y2

2

]
,

and the ellipsoid is simply the circle centered on the origin with radius
√

2 logN . We shall see further on how
one can obtain directly the asymptotic behavior of the perimeter of the convex hull in the case of n points
chosen at random in the plane according to a Gaussian normal distribution. It is given by:

〈LN 〉 ∼ 2π
√

2 logN,

in complete agreement with Geffroy’s result.
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– the perimeter LN of the convex hull.
In the latter case, Baxter’s formula coincides with (2), but Baxter’s derivation rests purely
on combinatorial arguments and does not make use of Cauchy’s formula. Instead, it relies
on counting the number of permutations of the random walk’s steps for which a given
partial sum Sk belongs to the boundary of the convex hull.
His formulae are:

E(FN) = 2
N∑

m=1

1

m
∼ 2 logN, (5)

E(KN) = 2, (6)

E(LN) = 2
N∑

k=1

E(|Sk|)
k

. (7)

– In 1963, appears the first [132] of two seminal papers by A. Rényi and R. Sulanke dealing
with the convex hull of N independent, identically distributed random points Pi (i =
1..N ) in dimension 2. Denoting by FN the number of edges of the convex hull, they
consider the following cases:

1. the Pi ’s are distributed uniformly within a convex, r-sided polygon K :

E(FN) = 2

3
r(logN + γ ) + T (K) + o(1) (8)

where γ is the Euler constant and T (K) is a constant depending on K only and which
is maximal for regular r-sided polygons,

2. the Pi ’s are uniformly distributed within a convex set K whose boundary is smooth:

E(FN) ∼
N→∞

α(K)N
3
2 , (9)

with α(K) a constant depending on K ,
3. the Pi ’s have a Gaussian normal distribution throughout the plane:

E(FN) ∼
N→∞

2
√

2π logN. (10)

– The following year, 1964, the second of Rényi and Sulanke’s papers [133] extend these
results, focusing on the asymptotic behavior N → ∞ of the perimeter LN and area AN

of the convex hull of N points Pi drawn uniformly and independently within a convex set
K of perimeter L and area A:

1. If K has a smooth boundary:

E(LN) = L − O(N− 2
3 ), (11)

E(AN) = A − O(N− 2
3 ). (12)

2. If K is a square of side a:

E(LN) = 4a − O(N− 1
2 ), (13)

E(AN) = a2 − O
(

logN

N

)
. (14)
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– In 1965, B. Efron [57], taking cue from Rényi and Sulanke, establish equivalent formu-
lae in dimension 3, together with the average number of vertices (faces in dimension 3),
the average perimeter and the average area of the convex hull of N points drawn inde-
pendently from a Gaussian normal distribution in dimension 2 or 3, or from a uniform
distribution inside a disk or sphere:

1. For instance, for N > 3 points in the plane, drawn independently from a Gaussian
normal distribution, writing φ(x) = (2π)− 1

2 exp(− 1
2x2) and �(x) = ∫ x

−∞ φ(y) dy:

E(VN) = 4
√

π

(
N

2

)∫ ∞

−∞
�N−2(p)φ2(p)dp, (15)

E(LN) = 4π

(
N

2

)∫ ∞

−∞
�N−2(p)φ2(p)dp, (16)

E(AN) = 3π

(
N

3

)∫ ∞

−∞
�N−3(p)φ3(p)dp, (17)

where VN , LN and AN stand respectively for the number of vertices, perimeter and
area of the convex hull.

2. In dimension 3, one has:

E(FN) = 4
√

3π

(
N

3

)∫ ∞

−∞
�N−3(p)φ3(p)dp, (18)

E(EN) = 3

2
E(FN), (19)

E(VN) = 1

2
E(FN) + 2, (20)

E(LN) = 24
√

3π

(
N

3

)∫ ∞

−∞
�N−3(p)φ3(p)dp, (21)

E(AN) = 12π

(
N

3

)∫ ∞

−∞
�N−3(p)φ3(p)dp, (22)

FN and EN standing respectively for the number of faces and the number of edges of
the convex hull (LN is thus the sum of the lengths of the edges, and AN the sum of the
surface areas of the faces, VN denotes again the number of vertices).

He also computes the average volume of the convex hull of N vectors drawn indepen-
dently from a Gaussian normal distribution (with zero average and unit variance) in a
space of dimension d < N :

E(VolN) = 2π
1
2 d


( 1
2d)

(
d + 1

d

)(
N

d + 1

)∫ ∞

−∞
�N−d−1(p)φd+1(p)dp (23)

(for N = d + 1, this expression needs to be multiplied by 2).
– In 1965 still, H. Raynaud communicates in the Comptes Rendus de l’Académie des Sci-

ences [127], his generalization to R
d of the formulae by Rényi-Sulanke and Efron per-

taining to the number of vertices of the convex hull, either in the Gaussian normal case or
in the uniform case. In the case of a Gaussian normal case, with zero mean and variance
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a/2, Raynaud computes the probability density of the convex hull of a sample and shows
that, in the limit when the number of points N in the sample becomes very large, this
distribution converges to a uniform Poisson distribution on the sphere of radius

√
a logN

centered at the origin.
– In 1970, H. Carnal [35] addresses the question of the convex hull of N random points in

the plane, drawn from a distribution which he assumes only to be circularly symmetric.
He gives expressions for the asymptotic behavior of the average number of edges, average
perimeter and average area of the convex hull. In particular, he shows that the average
number of edges, for certain distributions, goes to a constant (namely 4) when N becomes
very large.

– H. Raynaud publishes in 1970 a second paper [128] on the convex hull of N independent
points (in both the Gaussian normal case throughout the space or the uniform case within
a sphere) in R

d . He gives detailed accounts of the results he announced earlier [127]. He
also gives expressions for the asymptotic behavior of the number of faces F

(d)
N (or edges

if d = 2) of the convex hull, and shows in particular that in the standard Gaussian normal
case:

E(F
(d)
N ) ∼

N→∞
2d

√
d

(π logN)
1
2 (d−1). (24)

Note that for d = 2, one recovers Rényi and Sulanke’s formula (10). For d = 3, one has
E(F

(3)
N ) ∼ 8√

3
π logN .

– Ten years later, in 1980, W. Eddy [54] introduces the notion of support function into the
field of random convex hulls. Considering, in the plane, N points Pi = (xi, yi) with a
Gaussian normal distribution, he associates to each a random process defined by:

Bi(θ) = xi cos θ + yi sin θ,

θ varying from 0 to 2π . Note that Bi(θ) is simply the projection of point Pi on the line of
direction θ . He further defines the random process

M(θ) = sup
i

{Bi(θ)},

whose law is shown to be given by that of the pointwise maximum of the N indepen-
dent, identically distributed random processes Bi(θ) (cf. [24]). Eddy then shows that the
point distribution of the stochastic process M(θ) is given by Gumbel’s law, and he hints
(without going further) to the fact that certain functionals of M(θ) give access to some
geometrical properties of the convex hull of the sample:

LN =
∫ 2π

0
M(θ)dθ (25)

for the perimeter; and:

AN = 1

2

∫ 2π

0
[M2(θ) − (M ′(θ))2]dθ (26)

for the area, where M ′(θ) = dM
dθ

. These functionals are what we refer to as Cauchy’s
formulae.
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– It is precisely the first of these formulae that L. Takács [152] suggests one should use
to compute the expected perimeter length of the convex hull of planar Brownian mo-
tion, in his 1980 solution to a problem set by G. Letac in the American Mathematical
Monthly in 1978 [98]. Denoting by Lt the perimeter of the convex hull of Brownian mo-
tion B(τ),0 ≤ τ ≤ t , Takács shows that:

E(Lt ) = √
8πt. (27)

The calculation is performed using the support function of the trajectory, in the same way
as Eddy [54] hinted at for independent points. Planar Brownian motion B(τ) is written as
(x(τ ), y(τ )), where x and y are standard one-dimensional Brownian motions. One then
defines

zτ (θ) = x(τ) cos θ + y(τ) sin θ.

This stochastic process zτ (θ) being nothing else but the projection of the planar motion
on the line with direction θ , it is itself, for a fixed θ , an instance of standard Brownian
motion. Hence, the M(θ) that appears in Cauchy’s formula (see (25)) and which is defined
as:

M(θ) = max
0≤τ≤t

{zτ (θ)},
follows for a given θ the same law as the maximum of a standard one-dimensional Brown-
ian motion. In particular, it is independent of θ and therefore one can write:

E(Lt ) = 2πE(M(0)),

thus using the isotropy of the distribution of planar Brownian motion. Knowledge of the
right-hand part of this equation then yields the desired result.

– In 1981, W. Eddy and J. Gale [55] extend further the work started by W. Eddy [54]. They
point out the link between extreme-value statistics applied to N 1-dimensional random
variables and the distribution of the convex hull of multidimensional random variables.
They consider sample distributions with spherical symmetry and distinguish between
three classes according to the shape of the tails: exponential, algebraic (power-law) or
truncated (e.g. distributed inside a sphere). Eddy and Gale then compute the asymptotic
distribution of the associated stochastic process (the support function M(θ)) when the
number N of points becomes very large. The three classes of initial sample distribution
yield three types of distribution for the limit process, given by the Gumbel, Fréchet and
Weibull laws, which are well known in the context of extreme-value statistics. Eddy and
Gale also remark that the average number of vertices of the convex hull in the “Fréchet”
case (that is, for initial sample distributions with power-law tails) tends to a constant (as
proved by Carnal [35]).

– Following another route, N. Jewell and J. Romano establish the following year, in 1982,
a correspondence between the random convex hull problem and a coverage problem,
namely the covering of the unit circle with arcs whose positions and lengths follow a
bivariate law [84]. Thus, for arcs of length π :

Prob (circle covered) = Prob (conv. hull contains origin)

and more generally, for arcs of lengths other than π :

Prob (circle covered) = Prob (conv. hull contains a given disk)
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– In 1983, M. El Bachir, in his doctoral dissertation [58], studies the convex hull C(t) of
planar Brownian motion B(t). In particular, he gives a proof of P. Lévy’s assertion [101]
that almost surely C(t) has a smooth boundary. El Bachir also shows that C(t) is a Markov
process on the set of compact convex domains containing the origin O . Denoting by ∂C(t)

the boundary of C(t), he establishes:

1. Prob(B(t) ∈ ∂C(t)) = Prob(O ∈ ∂C(t)) = 0
2. {t : B(t) ∈ ∂C(t)} has a null Lebesgue measure.

El Bachir then computes explicitly, from Cauchy’s formulae, the expected perimeter
length and surface area of the convex hull of planar Brownian motion. For the perime-
ter, he derives a general formula for motions with a drift μ, of which the special case
μ = 0 enables one to retrieve Takács’

√
8πt . For the area, he obtains:

E(At ) = πt

2
. (28)

– Over the following decade, the study of the convex hull of a sample of independent, iden-
tically distributed random points has attracted much interest. C. Buchta [28] has obtained
an exact formula giving the average area of the convex hull of N points drawn uniformly
inside a convex domain K , the existing formulae being so far mainly asymptotic. A few
years later, F. Affentranger [3] has extended Buchta’s result to higher dimensions, via an
induction relation. Many details and references can be found in the surveys of Buchta [29],
R. Schneider [142], W. Weil and J. Wieacker [158].

– Another active route is the one open by Eddy [54] and Gale [55], whose works have
been extended by H. Brozius and de Haan [26] to non-rotationally-invariant distributions.
Brozius et al. [25] also study the convergence in law to Poisson point processes exhibited
by the distributions of quantities such as the number of vertices of the convex hull of
independent, identically distributed random points. The works of Davis et al. [45] and
Aldous et al. [6] also follow this type of approach.

– Cranston et al. [42] resume the study of the convex hull C(t) of planar Brownian motion
and in particular of the continuity of its boundary ∂C(t). They show that ∂C(t) is almost
surely C1 and mention work by Shimura [144, 145] and K. Burdzy [30] showing that for
all α ∈ ( π

2 ,π), there exist random times τ such that C(τ) has corners of opening α. They
also mention Le Gall [95] showing that the Hausdorff dimension of the set of times at
which the Brownian motion visits a corner of C(t) of opening α is almost surely equal to
1 − π

2α
. Finally, they also point to P. Lévy’s paper [102] and S.N. Evans [60] for details

on the growth rate of C(t), as well as to K. Burdzy and J. San Martin’s work [31] on the
curvature of C(t) near the bottom-most point of the Brownian trajectory.

– In 1992, D. Khoshnevisan [87] elaborates upon Cranston et al.’s work by establishing an
inequality that allows one to transpose, in some sense, the scaling properties of Brownian
motion to its convex hull.

– In 1993, two papers concerned with the convex hull of correlated random points, specifi-
cally the vertices of a random walk, are published. G. Letac [99] points out that Cauchy’s
formula enables one to write the perimeter LN of the convex hull of any N -step random
walk in terms of its support function MN(θ) = max0≤i≤N {xi cos θ + yi sin θ}:

E(LN) =
∫ 2π

0
E(MN(θ)) dθ, (29)

which provides an alternative to Spitzer-Widom’s or Baxter’s methods to compute the
perimeter of the convex hull of a random walk.
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It is precisely to the Spitzer-Widom-Baxter’s formula (see (2)) that T. Snyder and
J. Steele [150] return, using again purely combinatorial arguments to obtain the following
generalizations:

Let FN be the number of edges of the convex hull of a N -step planar random
walk and let ei be the length of the i-th edge. If f is a real-valued function and if
we set GN = ∑FN

i=1 f (ei), then:

E(GN) = 2
N∑

k=1

E(f (|Sk|))
k

, (30)

where Sk = Z1 + Z2 + · · · + Zk is the position of the walk after k steps.
– Taking f (x) = 1, one has GN = FN (the number of edges of the convex hull)

and one retrieves Baxter’s result

E(FN) = 2
N∑

k=1

1

k
∼

N→∞
2 logN.

– Taking f (x) = x, one has GN = LN and one retrieves Spitzer and Widom’s
result without using Cauchy’s formula:

E(LN) = 2
N∑

k=1

E(|Sk|)
k

.

– Taking f (x) = x2, GN is the sum of the squared edges lengths denoted by L
(2)
N ,

one obtains:

E(L
(2)
N ) = 2N(σ 2

X + σ 2
Y ),

σ 2
X + σ 2

Y being the variance of an individual step.

Snyder and Steele establish two other important results:

1. An upper bound for the variance E(L2
N) (not to be mistaken for E(L

(2)
N )) of the perime-

ter of the convex hull of any N -step planar random walk:

E(L2
N) ≤ π2

2
N(σ 2

X + σ 2
Y ) (31)

– A large deviation inequality for the perimeter of the convex hull of an N -step random
walk:

Prob(|LN − E(LN)| ≥ t) ≤ 2e
− t2

8π2N (32)

– In a paper published in 1996 [72], A. Goldman introduces a new point of view on the
convex hull of planar Brownian bridge. He derives a set of new identities relating the
spectral empirical function of a homogeneous Poisson process to certain functionals of
the convex hull. More precisely:

Let D(R) be the open disk with radius R and Di (i = 1..NR) the polygonal
convex domains associated to a Poisson random measure and contained in D(R).
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Let

φi(t) =
∞∑

n=1

exp(−tλn,i )

be the spectral function of the domain Di (the λn,i ’s being the eigenvalues of the
Laplacian for the Dirichlet problem on Di ). Finally, set:

φR(t) = 1

NR

NR∑

i=1

φi(t).

Then:

φR(t) almost surely has a finite limit �(t) (called the empirical spectral func-
tion) when R goes to infinity, and:

�(t) = 1

4π2t
E(e−√

2tL) (33)

where L stands for the perimeter of the convex hull of the unit-time planar
Brownian bridge (a Brownian motion conditioned to return to its origin at
time t = 1).

Goldman also computes the first moment of L using Cauchy’s formula

E(L) =
√

π3

2
. (34)

To obtain the second moment,

E(L2) = π2

3

(
π

∫ π

0

sinu

u
du − 1

)
, (35)

Goldman brings it down to computing E(M(θ)M(0)), the two-point correlation function
of the support function of the Brownian bridge,

E(M(θ)M(0)) = sin θ

2

[
θ(2π − θ)

6(π − θ)
+ cotan θ

]
. (36)

Goldman obtains this last result from the probability that the Brownian bridge B0,1 lies
entirely inside a wedge ξ of opening angle β:

Prob(B0,1 ∈ ξ) = 4πe−r2

β

∞∑

k=1

sin2

(
kπα

β

)
Iν(r

2), (37)

with ν = kπ
β

, and, assuming that O lies inside the wedge ξ , with r the distance between
O and the apex S of the wedge, and with α the angle between the line OS and the closest
edge of the wedge. (Iν is the modified Bessel function of the first kind.)

– In a later paper [73], Goldman exploits further the link between Poissonian mosaics and
the convex hull of planar Brownian bridges. He first shows that one can replace Brownian
bridges by simple Brownian motion. He then recalls Kendall’s conjecture on Crofton’s
cell (in a Poisson mosaic, this is the domain D0 that contains the origin): when the area
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V0 of this cell is large, its “shape” would be “close” to that of a disk. Goldman shows in
this paper a result supporting this claim (in terms of eigenvalues of the Laplacian for the
Dirichlet problem) and, thanks to the links he has established, deduces that the convex
hull of planar Brownian motion, when it is “small”, has an “almost circular” shape. More
precisely: if C is the convex hull of a unit-time, planar Brownian motion W , if D(r) is
the disk centered at the origin with radius r ∈ (0,∞) and if M = sup{‖W(s)‖,0 ≤ s ≤ 1},
then, for all ε ∈ (0,1):

lim sup
a→0

Prob[D((1 − ε)a) ⊂ C ⊂ D(a)|M = a] = 1. (38)

– In parallel, refined studies of the asymptotic distributions and limit laws of the number
of vertices, perimeter or area of the convex hull of independent points drawn uniformly
inside a convex domain K continue, in particular with the work of P. Groeneboom [75]
on the number of vertices (augmented by S. Finch and I. Hueter’s result [62]), Hsing [82]
on the area when K is a disk, Cabo and Groeneboom [33] for the area too but when K

is polygonal, Bräker and Hsing [22] for the joint law of the perimeter and area, and the
more recent works of Vu [157], Calka and Schreiber [34], Reitzner [129–131] and Bárány
et al. [8–10].

– In 2009, P. Biane and G. Letac [18] return to the convex hull of planar Brownian motion,
focusing on the global convex hull of several copies of the same trajectory (the copies
obtained via rotations). They compute the expected perimeter length of this global convex
hull for various settings.

Thus we see that random convex hulls have aroused much interest over the past 50 years
or so. The main results relevant to our present study are those giving explicit expressions
(exact or asymptotic) for the average perimeter and area of the convex hull of a random
sample in the plane. We have attempted to group the corresponding references in Table 1.

Finally, we have developed a general method recently [125] that enabled us not only to fill
in the empty cells in this table but also to treat a generalization which is particularly relevant

Table 1 A partial list of known
results and open problems
(marked by ?)

Existing results Perimeter (average) Area (average)

Independent
points

Rényi and Sulanke [133] see (11)
and (13));

Efron [57] (see (16) and (17));
Carnal [35];

Buchta [28]; Affentranger [3]

Random
walk

open
paths

Spitzer et Widom
[151] (see (2));
Baxter [13];
Snyder et Steele
[150];
Letac [99]

?

(1 walker) closed
paths

? ?

Brownian
motion

open
paths

Takãcs [152]
see (27))

El Bachir [58]
(see (28))

(1 motion) closed
paths

Goldmann [72]
(see (34))

?
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physically, namely the geometric properties of the global convex hull of n > 1 independent
planar Brownian paths, each of the same duration T . To the best of our knowledge, this
topic had never been addressed before. Among the works mentioned above, those dealing
with correlated points always consider a single random walk or a single Brownian motion,
except for [18] where several copies of the same Brownian path are considered.

Yet, the convex hull of several random paths appears quite naturally, both on the theoret-
ical side and also in the context of ecology, as we shall see later (Sect. 5.1). Furthermore, the
simplest case, that of n independent Brownian motions, already exhibits interesting features
since the geometry of the convex hull depends in a nontrivial manner on n [125]. We showed
that even though the Brownian walkers are independent, the global convex hull of the union
of their trajectories depend on the multiplicity n of the walkers in a nontrivial way. In the
large n limit, the convex hull tends to a circle with a radius ∼ √

lnn [125] which turns out
to be identical to that of the set of distinct sites visited by n independent random walkers on
a 2-dimensional lattice [2, 93, 94]. This general method will be developed in detail in the
following sections.

3 Support Function and Cauchy Formulae: a General Approach to Random Convex
Hulls

In this section we discuss the notion of the ‘support function’. Intuitively speaking, the
support function in a certain direction θ of a given two dimensional object is the maximum
spatial extent of the object along that direction. We will see that the knowledge of this
function for all angles θ can be fruitfully used to obtain the perimeter and the area of any
closed convex curve (in particular for a convex polygon) by virtue of Cauchy’s formulae.

3.1 Support Function of a Closed Convex Curve and Cauchy’s Formulae

Let C denote any closed and smooth convex curve in a plane. For example C may represent
a circle or an ellipse. The curve C may be represented by the coordinates of the points on
it {(X(s), Y (s))} parametrized by a continuous s. Associated with C, one can construct a
support function in a natural geometric way. Consider any arbitrary direction from the origin
O specified by the angle θ with respect to the x axis. Bring a straight line from infinity
perpendicularly along direction θ and stop when it touches a point on the curve C. The
support function M(θ), associated with curve C, denotes the Euclidean (signed) distance of
this perpendicular line from the origin when it stops, measuring the maximal extension of
the curve C along the direction θ .

M(θ) = max
s∈C

{X(s) cos θ + Y (s) sin θ}. (39)

The knowledge of M(θ) enables one to compute the perimeter of C and also the area
enclosed by C via Cauchy’s formulae

L =
∫ 2π

0
dθM(θ), (40)

A = 1

2

∫ 2π

0
dθ(M2(θ) − (M ′(θ))2). (41)
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Fig. 1 Simple examples for
Cauchy formulae: circle centered
on the origin, and circle “resting”
on the origin

These formulae are straightforward to establish for polygonal curves, and taking the continu-
ous limit in the polygonal approximation yields the result for smooth curves (a non-rigorous,
but quick, ‘proof’ is provided in Appendix A).

In the elementary example of a circle centered on the origin with radius r (Fig. 1(a)),
M(θ) is constant and equal to r for all θ . Its derivative is zero and Cauchy formulae give
the standard results. The second example is slightly less trivial (Fig. 1(b)) as M(θ) is not
constant but equal to r(1 + sin θ). One of course recovers again the usual results:

L =
∫ 2π

0
dθ r(1 + sin θ) = 2πr,

A = 1

2

∫ 2π

0
dθ r2[(1 + sin θ)2 − cos2 θ ] = πr2.

It is interesting to note that Cauchy’s original motivations for deriving the formulae (40)
and (41) actually came from a somewhat different context. He was interested in developing
a method to compute the roots of certain algebraic equations as a convergent series and to
compute an upper bound of the error made in stopping the series after a finite number of
terms. It was in this connection that he proved a number of theorems concerning the length
of the perimeter and the area enclosed by a closed convex curve in a plane. Anticipating
the usefulness of his formulae in a variety of contexts and particularly in geometrical appli-
cations, he collected them in a self-contained “Mémoire” published by the “Académie des
Sciences” in 1850. It is worth pointing out that Cauchy’s formulae are of purely geometric
origin without any probabilistic content. The idea of using these formulae in a probabilistic
context was first used by Crofton [43] whose work can be considered as one of the starting
points of the subject of integral geometry, developed by Blaschke and his school during the
years 1935–1939.

3.2 Support Function of the Convex Hull of a Discrete Set of Points in Plane

Let I = {(xi, yi), i = 1,2, . . . ,N} denote a set of N points in a plane with coordinates
(xi, yi). Let C denote the convex hull of I , i.e., the minimal convex polygon enclosing this
set. This convex hull C is a closed, smooth convex curve and hence we can apply Cauchy’s
formulae in (40) and (41) to compute its perimeter and area. However, to apply these formu-
lae we first need to know the support function M(θ) associated with the convex hull C, as
given by (39). This requires a knowledge of the coordinates (X(s), Y (s)) of a point, parame-
trized by s, on the convex polygon C. A crucial point is that one can compute this support
function associated with the convex hull C of I just from the knowledge of the coordinates
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Fig. 2 (Color online) Support
function M(θ) and its derivative
M ′(θ) of the convex hull (dotted
green lines) associated with a set
of 7 points

(xk, yk) of the set I itself and without requiring first to compute the coordinates (X(s), Y (s))

of the points on the convex hull C. Indeed the support function M(θ) associated with C can
be written as

M(θ) = max
s∈C

{X(s) cos θ + Y (s) sin θ} = max
i∈I

{xi cos θ + yi sin θ}. (42)

This simply follows from the fact that M(θ), the maximal extent of the convex polygon C

along θ , is also the maximum of the projections of all points of the set I along that direc-
tion θ . Thus, the knowledge of the coordinates (xk, yk) of any set I is enough to determine
the support function M(θ) of the convex hull C associated with I by (42).

We also note that, by definition of M(θ) in (42), for any fixed θ there will be a point
(xk∗ , yk∗) in the set such that:

M(θ) = xk∗ cos θ + yk∗ sin θ. (43)

Taking derivative of (43) with respect to θ gives

M ′(θ) = −xk∗ sin θ + yk∗ cos θ. (44)

In other words, M ′(θ) is the distance between the point of the set giving the maximal pro-
jection M(θ) and the straight line with direction θ , as illustrated in Fig. 2.

3.3 A Simple Illustration of the Support Function M(θ) of a Triangle

To get familiar with the support function M(θ) associated with a convex hull, let us consider
a simple example of three points in a plane. The associated convex hull is evidently a triangle
(Fig. 3) whose support function M(θ) and derivative M ′(θ) are drawn in Figs. 4(a) and 4(b).

M(θ) is of course 2π -periodic. A notable feature of its graph is the presence of angular
points, corresponding to discontinuities of the derivative of M(θ). So, M(θ) appears piece-
wise smooth, with a derivative exhibiting a finite number of jump discontinuities. This finite
number is, in the special case considered here, equal to three, the number of points in the
set whose support function is M(θ). This is not by chance and the coincidence can be un-
derstood by returning to (43) and (44): within a given range of θ , one of the vertices of the
triangle ABC will be giving the maximal projection on direction θ and will thus determine
the value of M(θ), say:

M(θ) = xA cos θ + yA sin θ. (45)

Then, within the same range of θ :

M ′(θ) = −xA sin θ + yA cos θ. (46)
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Fig. 3 (Color online) Triangle
ABC (in red), with the line of
direction θ (in blue) and the line
through O perpendicular to AB

Fig. 4 (a) Support function
M(θ) of triangle ABC and (b) its
derivative M ′(θ)

We can specify the range of angles θ on which (45) and (46) are valid. Let us indeed note
that by the definition of M(θ), when θ corresponds to the perpendicular through the origin
O to the line segment AB , A and B have the same projection on direction θ (Fig. 3). In the
θ−-limit, that is for angles approaching θ from below, the value of M(θ) will be given by
the projection of A, and the value of |M ′(θ)| by the length of the line segment AH (H being
the foot of the perpendicular to AB through O). In the θ+-limit, for angles slightly larger
than θ , the value of M(θ) will still be the common projection of A and B but |M ′(θ)| will
be given by the length BH . Whence, as θ passes on the perpendicular to AB through O , the
support function M will be continuous, while its derivative will have a jump discontinuity.
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Indeed, looking at Fig. 3, and starting from θ = 0, we see that point A gives the maximal
projection on direction θ , and the length of this projection decreases as θ increases, until the
direction given by θ coincides with line (OH), which is the perpendicular to [AB] through
the origin. At this point, as we have just noticed, M(θ) has an angular point: B will then give
the maximal projection, whose value will increase until θ corresponds to line (OB) where
M(θ) attains a local maximum before decreasing until θ coincides with the perpendicular
to [BC] through O , where M(θ) has a second angular point; and so on.2

3.4 Cauchy Formulae Applied to a Random Sample

Let us now examine how the Cauchy formulae can be applied to determine the mean perime-
ter and the mean area of a convex hull associated with a set of N points with coordinates
(xi, yi) in a plane chosen from some underlying probability distribution. The points may be
independent or correlated.

For each i and fixed θ , let us define

zi(θ) = xi cos θ + yi sin θ, (47)

hi(θ) = −xi sin θ + yi cos θ. (48)

zi is simply the projection of the i-th point in the sample on direction θ and hi its projection
on the direction perpendicular to θ . By definition (see (42)):

M(θ) = max
i

{zi(θ)} ≡ zk∗(θ) (49)

for a certain index k∗.
One then has:

M ′(θ) = hk∗(θ). (50)

When the points (xi, yi) are random variables, so is the index k∗ and subsequently both
M(θ) and M ′(θ) are also random variables. Taking averages in Cauchy’s formulae (40)
and (41) we get the mean perimeter and the mean area

〈L〉 =
∫ 2π

0
dθ 〈M(θ)〉, (51)

〈A〉 = 1

2

∫ 2π

0
dθ (〈M2(θ)〉 − 〈(M ′(θ))2〉) (52)

where 〈·〉 indicates an average over all realizations of the points, and we assume that this
operation commutes with the integration over θ .

In the most general setting, let us also define

2In the specific example chosen here, all 3 vertices of the triangle are “visible” through a local maximum
of M(θ). However, this is not always the case. This is easily seen by considering a configuration in which
point H (the foot of the perpendicular to (AB) through O), while being by definition on the line (AB), is
not on the line segment [AB]: for example, if H is beyond A, A will go “unnoticed”. Yet, the coincidence of
direction θ with line (OH) will always result in a discontinuity of M ′(θ) (although without change in sign),
which corresponds to an angular point for M(θ). Thus the angular points of M(θ) count the number of sides
(and, in dimension 2, of vertices) of the convex hull. As for the local maxima of M(θ), they only count the
number of vertices E of the convex hull that are such that the maximal projection on line (OE) is given by
E itself—one could call such vertices “extremal” or “self-extremal” vertices.



972 S.N. Majumdar et al.

– μθ be the probability density function of the maximum of the zi(θ), i.e., of the random
variable zk∗(θ)

– ρθ be the probability density function of the index k∗ for which zi(θ) becomes the maxi-
mum

– and σi,θ be the probability density function of the random variable hi(θ) for a fixed i

and θ ,

then:

〈M(θ)〉 =
∫ ∞

−∞
zμθ (z) dz, (53)

〈M2(θ)〉 =
∫ ∞

−∞
z2μθ(z) dz, (54)

〈(M ′(θ))2〉 =
∫

I

∫ ∞

−∞
h2ρθ(k)σk,θ (h) dk dh (55)

=
∫

I

ρθ (k)〈h2
k(θ)〉dk. (56)

With this formulation, it appears explicitly that random convex hulls are directly linked
with extreme-value statistics, the study of extremes in samples of random variables. Indeed,
when I is finite and the N points labeled by i ∈ I are chosen independently and are iden-
tically distributed, for instance in R

2, then μθ is the distribution of the maximum of N

real-valued i.i.d. random variables (namely the zi(θ)’s)—a classical example of EVS [40,
69, 76, 77]. One can then use directly the results of the standard EVS of i.i.d. random vari-
ables. On the other hand, when the points are correlated, we need to study the distribution
of the maximum of a set of correlated random variables—a subject of much current interest
as mentioned in the introduction. Here we need to go beyond i.i.d. variables and take into
account the strong correlations between the random variables that changes the distribution
of their maximum in a nontrivial way.

If the sample points are the vertices of an N -step 2-dimensional random walk, then the
zi(θ)’s can be seen, for a fixed θ as the vertices of an N -step 1-dimensional random walk,
and μθ is the distribution of the maximum of such a walk. Note that in this case, ρθ is the dis-
tribution of the step at which the 1-dimensional random walk zi(θ) attains its maximum [38,
44, 61, 121].

One can also consider cases when I is not a discrete, finite set: e.g. the random set might
be the trajectory B(τ ) = (x(τ ), y(τ )) of a planar Brownian motion at times τ ∈ I = [0, T ].
In such a case, both zτ (θ) and hτ (θ) are instances of 1-dimensional Brownian motion, and
μθ is the distribution of the maximum of 1-dimensional Brownian motion in [0, T ], ρθ is
the distribution of the time at which 1-dimensional Brownian motion attains its maximum
in [0, T ] (given by Lévy’s arcsine law [100]), and στ,θ the propagator of 1-dimensional
Brownian motion between 0 and τ (i.e. the distribution of the position of a linear Brownian
motion after a time τ ).

In the following section, we use this approach to compute the mean perimeter and the
mean area of the convex hull of a set of N independently chosen points in a plane. In Sect. 5,
we will examine how the same approach can be adapted to compute the mean perimeter and
the mean area of the convex hull of n independent planar Brownian paths each of the same
duration T .
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4 Independent Points

4.1 General Case

Let us consider here a sample of N points drawn independently from a bivariate distribution:

Prob(xi ∈ [x, x + dx], yi ∈ [y, y + dy]) = p(x, y) dx dy.

Following the route explained in the previous section (see (47), (48)), we let:

zi(θ) = xi cos θ + yi sin θ,

and:

hi(θ) = −xi sin θ + yi cos θ.

4.2 Isotropic Cases

Let (x1, y1), (x2, y2), . . . , (xN , yN) be N points in the plane, each drawn independently from
a bivariate distribution p(x, y) that is invariant under rotation, i.e., p(x, y) = G(

√
x2 + y2).

In such an isotropic case, the distribution of the support function M(θ) does not depend on
θ and it is thus sufficient to set θ = 0 and hence MN ≡ M(0). The random variables zi(0)

and hi(0) are just, respectively, the abscissa xi and ordinate yi of the points. Combining (51)
and (53), we can then write the average perimeter of the convex hull

〈LN 〉 = 2π〈max
i

{xi}〉 ≡ 2π〈MN 〉. (57)

It is useful to first define the cumulative distribution

FN(M) = Prob[MN ≤ M]. (58)

For independent variables it follows that

FN(M) =
[∫ M

−∞
pX(x)dx

]N

, (59)

where pX(x) = ∫ ∞
−∞ p(x, y) dy is the marginal of the first variable X. Thus, in a general

isotropic case

〈MN 〉 =
∫ ∞

−∞
MF ′

N(M)dM,

〈LN 〉 = 2πN

∫ ∞

−∞
MpX(M)

[∫ M

−∞
pX(x) dx

]N−1

dM

= 2πN

∫ ∞

−∞
M pX(M) FN−1(M)dM. (60)

For the average area in the isotropic case, we can write it as (see (52), (54), (56)):

〈AN 〉 = π〈M2
N 〉 − π〈y2

k∗ 〉, (61)
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where yk∗ is the ordinate of the point (xk∗ , yk∗) with the largest abscissa, i.e. satisfying:

xk∗ = max
i

{xi} = MN.

We can easily express the second moment of MN that appears in (61):

〈M2
N 〉 =

∫ ∞

−∞
M2F ′

N(M)dM (62)

= N

∫ ∞

−∞
M2pX(M)FN−1(M)dM. (63)

To compute the second term in (61), that is, the second moment of the ordinate of the point
with largest abscissa, we first compute the probability density function p̂ of this point, which
is defined by:

Prob{(xk∗ , yk∗) ∈ [(x, y), (x + dx, y + dy)]} = p̂(x, y) dx dy. (64)

(Note that FN(M) = ∫
p̂(M,y)dy.)

It is not difficult to see that p̂(xk∗ , yk∗) can be expressed as the probability density that
one of the N points has coordinates (xk∗ , yk∗) and the N − 1 other points have abscissas less
than x∗:

p̂(xk∗ , yk∗) = Np(xk∗ , yk∗)

[∫ xk∗

−∞
pX(x)dx

]N−1

. (65)

Then:

〈y2
k∗ 〉 = N

∫ ∫ ∞

−∞
y2

k∗p(xk∗ , yk∗)FN−1(xk∗) dxk∗ dyk∗ . (66)

It now suffices to insert (63) and (66) in (61) to obtain a general expression for the aver-
age area of the convex hull of N points drawn independently from an isotropic bivariate
distribution p with marginal pX:

〈AN 〉 = Nπ

∫ ∞

−∞
u2pX(u)FN−1(u) du

− Nπ

∫ ∫ ∞

−∞
v2p(u, v)FN−1(u) dudv. (67)

Equations (60) and (67) are the main results of this subsection. They provide the exact
mean perimeter and the mean area of the convex hull of N independent points in a plane
each drawn from an arbitrary isotropic distribution. As an example, let us consider the case
of a Gaussian distribution where the general expressions can be further simplified. Let

p(x, y) = 1

2π
e− 1

2 (x2+y2). (68)

We then have:

pX(x) = 1√
2π

exp

(
−x2

2

)
≡ φ(x) (69)
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and:
∫ x

−∞
pX(x ′) dx ′ =

∫ x

−∞
φ(x ′) dx ′ ≡ �(x). (70)

Inserting these into (60) and (61), and performing suitable integrations by parts, we ob-
tain:

〈LN 〉 = 4π

(
N

2

)∫ ∞

−∞
�N−2(x)φ2(x) dx, (71)

〈AN 〉 = 3π

(
N

3

)∫ ∞

−∞
�N−3(x)φ3(x) dx (72)

which coincide with the expressions derived by Efron [57] using a rather different method.

4.3 Asymptotic Behavior of the Average Perimeter and Area

To derive how the mean perimeter and the mean area behave for large N , we need to inves-
tigate the asymptotic large N behavior of the two exact expressions in (60) and (61). For
the mean perimeter, since it is exactly identical to the maximum MN (upto a factor 2π ) of
N independent variables each distributed via the marginal pX(x), we can use the standard
analysis used in EVS, which is summarized below. For the mean area, on the other hand, we
need to go further. We will give a specific example of this asymptotic analysis of the mean
area later.

4.3.1 Summary of Standard Extreme-Value Statistics

Let z1, z2, . . . , zN be independent, identically distributed random variables with probability
density function p(z), and let MN = maxκ=1..N {zκ} be their maximum. Then

FN(M) = Prob(MN ≤ M) =
[∫ M

−∞
p(z) dz

]N

.

In the limit when N becomes very large, the cumulative distribution function FN(M) ex-
hibits one of the three following behaviors, according to the shape of the “tails” of the parent
distribution p(z):

1. When the random variable z has unbounded support and its distribution p(z) has a faster
than power law tail as z → ∞. We will loosely refer to this as “Exponential tails”. Then,
“Exponential tails lead to a Gumbel-type law”

p(z) ∼
z→∞Ae−zα → FN(M) ∼

N→∞
e−e−(Mα−logN)

.

2. “Power-law tails lead to a Fréchet-type law”

p(z) ∼
z→∞Az−(α+1) → FN(M) ∼

N→∞
e− A

α NM−α

.

3. “Truncated tails (i.e. finite range a) lead to a Weibull-type law (with parameter a)”

p(z) ∼
z→a

A(a − z)α−1 → FN(M) ∼
N→∞

e− A
α N(a−M)α .
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In all three cases, the typical value of the maximum MN increases as N increases:3 the larger
the number of points, the further the maximum is pushed.

We will use these results for the general asymptotic behavior of the mean perimeter.
However, before providing a summary of the asymptotic behavior for a general isotropic
distribution, it is perhaps useful to consider two special cases in detail, one for the mean
perimeter and one for the mean area, that will illustrate how one can carry out this asymp-
totic analysis. For the mean perimeter, we choose the parent distribution from the Weibull-
type case and for the mean area we choose the Fréchet-type distribution. These choices are
somewhat arbitrary, one could have equally chosen any other case for illustration.

4.3.2 Example 1: Average Perimeter in the “Weibull-Type” Case

Let us consider N points drawn independently inside a circle of radius a from a distribution
with Weibull-type tails:

p(x, y) ∼√
x2+y2→a

A(a −
√

x2 + y2)γ−1. (73)

Letting as before FN denote the cumulative distribution function of the maximum MN of
the x-coordinates, an integration by parts yields:

〈MN 〉 =
∫ a

−a

x F ′
N(x) dx

= a −
∫ a

−a

FN(x) dx. (74)

We focus on the second term of (74) and write:

IN =
∫ a

−a

FN(x) dx.

Then:

IN =
∫ a

−a

[
1 −

∫ a

x

pX(x ′) dx ′
]N

dx (75)

=
∫ a

−a

exp

[
N log

(
1 −

∫ a

x

pX(x ′) dx ′
)]

dx, (76)

where as before we write pX(x) = ∫
p(x, y) dy.

We now pick 0 < ε � 1 such that

for (a − ε) < x < a, p(x, y) � A (a −
√

x2 + y2)γ−1.

The idea being that when N becomes large, some sample points will come closer and closer
to the boundary (the circle of radius a) and consequently one can focus on the tails of the
distribution. We therefore write:

IN = I
(1)
N + I

(2)
N (77)

3As logN in the first case, as a power of N in the second, and nearing as an inverse power of N the radius a

of the interval in the third case.
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with:

I
(1)
N =

∫ a−ε

−a

exp

[
N log

(
1 −

∫ a

x

pX(x ′) dx ′
)]

dx (78)

and

I
(2)
N =

∫ a

a−ε

exp

[
N log

(
1 −

∫ a

x

pX(x ′) dx ′
)]

dx. (79)

It is possible to show that I
(1)
N decreases exponentially with N and is, as expected on heuristic

grounds, subleading compared to I
(2)
N which, as we are going to see, decreases as an inverse

power in N .
The sample distribution p(x, y) is rotationally invariant and bounded (x2 + y2 ≤ a2).

Hence the marginal

pX(x) =
∫ √

a2−x2

−
√

a2−x2
p(x, y) dy (80)

= 2
∫ √

a2−x2

0
p(x, y) dy. (81)

Now for x � a, we have: p(x, y) ∼ A (a − √
x2 + y2)γ−1. Consequently, setting y = xu

and considering that (a − ε) < x < a:

pX(x) ∼ 2
∫ √

a2−x2

0
A(a −

√
x2 + y2)γ−1 dy (82)

∼ 2Ax

∫
√

a2

x2 −1

0
(a − x

√
1 + u2)γ−1 du (83)

∼ 2Aa

∫ √
2(a−x)

a

0
(a − x)γ−1 du (84)

∼ 2A
√

2a(a − x)γ− 1
2 . (85)

We now proceed from (79):

I
(2)
N =

∫ a

a−ε

exp

[
N log

(
1 −

∫ a

x

pX(x ′) dx ′
)]

dx

∼
∫ a

a−ε

exp

[
N log

(
1 −

∫ a

x

2A
√

2a(a − x ′)γ− 1
2 dx ′

)]
dx

∼
∫ a

a−ε

exp

[
N log

(
1 − 4A

√
2a

2γ + 1
(a − x)γ+ 1

2

)]
dx

∼
∫ a

a−ε

exp−
[

4AN
√

2a

2γ + 1
(a − x)γ+ 1

2

]
dx. (86)
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To progress further, we perform the following change of variable:

u = 4AN
√

2a

2γ + 1
(a − x)γ+ 1

2 . (87)

In the large N limit in which we are working, this change of variable leads to:

I
(2)
N ∼ 2

[4AN
√

2a] 2
1+2γ

∫ ∞

0
e−u[(2γ + 1)u] 1−2γ

1+2γ du

∼ 2(2γ + 1)
1−2γ
1+2γ 
( 2

2γ+1 )

[4AN
√

2a] 2
1+2γ

. (88)

The combination of (88) with (74) and (57) yields the final result:

〈LN 〉 ∼
n→∞ 2πa − 4π(2γ + 1)

1−2γ
1+2γ 
( 2

2γ+1 )

[4AN
√

2a] 2
1+2γ

. (89)

To illustrate this asymptotic result for a concrete example, consider N points drawn inde-
pendently and uniformly from a unit disk

p(x, y) = 1

π
�(1 − x2 − y2), (90)

where � is the Heaviside step function.
In terms of our notations, this corresponds to:

a = 1, (91)

A = 1

π
, (92)

γ = 1. (93)

We find:

〈LN 〉 ∼
N→∞

2π

(
1 − 
( 2

3 )π
2
3

12
1
3 N

2
3

)
, (94)

in complete agreement with Rényi and Sulanke’s result (see (11)) [133]. Note that for large
N , the mean perimeter of the convex hull approaches 2π , i.e., the convex hull approaches
the bounding circle of radius unity of the disk. But it approaches very slowly, the correction
term decreases for large N only as a power law ∼ N−2/3. Actually, for this example of
uniform distribution over a unit disk, one can also obtain simple and explicit expressions for
the mean perimeter and the mean area starting from our general expressions in (60) and (61).
Skipping details, we get
Perimeter:

〈LN 〉 = 2π

[
1 −

∫ 1

−1
FN(M)dM

]
. (95)

Area:

〈AN 〉 = π

[
1 − 8

3

∫ 1

−1
MFN(M)dM

]
(96)
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where:

FN(M) = 1

π
[arcsin(M) + M

√
1 − M2]N . (97)

One can also easily work out the asymptotic behavior of the mean area in this example
using (96) and (97) and we get

〈AN 〉 ∼
N→∞

π

(
1 − 2


( 2
3 )2

7
3 π

2
3

3
4
3 N

2
3

)
(98)

which, once again, agrees with Rényi and Sulanke’s result (see (12)) [133]. Note also that
the mean area of the convex hull approaches, for large N , to the area of the unit disk. Notice
also that the exponent of N , which governs the speed of convergence is the same for the area
as for the perimeter—only the prefactor of the power of N changes.4

At this point it is also worth recalling the results of Hilhorst et al. [81] regarding
Sylvester’s problem.5 When N becomes large, the convex hull of the N points (conditioned
to have all the N points to be its vertices) lies in an annulus of width ∼ N− 4

5 smaller than
the N− 2

3 found in our case. This can be understood qualitatively by noticing that requiring
the N points to be on the convex hull will tend to increase the size of the hull and therefore
push it closer to the boundary of the disk.

4.3.3 Example 2: Average Area in the “Fréchet-Type” Case

Consider N points drawn independently from an isotropic distribution with Fréchet-type
tails:

p(x, y) ∼√
x2+y2→∞

A

(x2 + y2)
γ+2

2

. (99)

Recalling (67), we start by its first term. Letting as before FN denote the cumulative distri-
bution function of the maximum MN of the x-coordinates, we have:

〈M2
N 〉 =

∫ ∞

−∞
x2F ′

N(x) dx ≡ IN . (100)

With the same notation as previously:

FN(x) =
[

1 −
∫ ∞

x

pX(x ′) dx ′
]N

(101)

where as before we write pX(x) = ∫
p(x, y) dy.

We pick K � 1 such that for

x ≥ K,

4Rényi and Sulanke [133] have shown that this is in fact true for every smooth-bounded support, and, more-

over, with the same universal exponent: N
− 2

3 .
5If N points are drawn from a uniform distribution in the unit disk, what is the probability pN that they be
the vertices of a convex polygon—in other words that they be the vertices of their own convex hull?
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p(x, y) � A′

(x2 + y2)
γ+2

2

.

The idea being that when N becomes large, sample points will disseminate further and
further in the plane, and consequently one can focus on the tails of the distribution. We
therefore write:

IN = I
(1)
N + I

(2)
N (102)

with:

I
(1)
N =

∫ K

−∞
x2F ′

N(x) dx (103)

and

I
(2)
N =

∫ ∞

K

x2F ′
N(x) dx. (104)

It is easy to show that I
(1)
N , as before, is subleading compared to I

(2)
N .

The sample distribution p(x, y) is rotationally invariant and so:

pX(x) =
∫ ∞

−∞
p(x, y) dy (105)

= 2
∫ ∞

0
p(x, y) dy. (106)

Now for x � 1, we have: p(x, y) ∼ A

(x2+y2)
γ+2

2
. Consequently, setting y = ux and consider-

ing cases when x � 1:

pX(x) ∼ 2
∫ ∞

0

A

(x2 + y2)
γ+2

2

dy (107)

∼ 2Ax

∫ ∞

0

1

xγ+2(1 + u2)
γ+2

2

du (108)

∼ A
√

π
(
γ+1

2 )

xγ+1
(
γ

2 + 1)
(109)

∼ C

xγ+1
(110)

where we have set C = A
√

π

(

γ+1
2 )


(
γ
2 +1)

.

Now we can express FN(x) for large x and large n:

FN(x) ∼
[

1 −
∫ ∞

x

C

x ′γ+1
dx ′

]N

∼
[

1 − C

γxγ

]N

∼ e
− NC

γxγ . (111)
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Whence, still for large x and large N :

F ′
N(x) ∼ NC

xγ+1
e

− NC
γxγ . (112)

We now insert (112) into (104), setting u = NC
γxγ :

I
(2)
N ∼

∫ ∞

0

(
NC

γ

) 2
γ

u
− 2

γ e−u du

∼
(

NC

γ

) 2
γ




(
1 − 2

γ

)
. (113)

Let us now examine the second term in (67). As before, we focus on the large-x part of the
integral, which will dominate. We rewrite it, so as to bring it down to the calculation that we
have done in the previous paragraph:

N

∫ ∞

K

∫ ∞

−∞
y2p(x, y)FN−1(x) dx dy

=
∫ ∞

K

F ′
N(x)

∫ ∞
−∞ y2p(x, y) dy

pX(x)
dx

∼
∫ ∞

K

F ′
N(x)x2 A

C

∫ ∞

−∞

u2

(1 + u2)
γ+2

2

dudx

∼ 1

γ − 1

∫ ∞

K

F ′
N(x)x2 dx. (114)

This last integral is, up to the factor 1
γ−1 , the same as (104); consequently, we obtain:

〈AN 〉 ∼
N→∞

(
1 − 1

γ − 1

)∫ ∞

K

x2F ′
N(x) dx,

which, combined to (113) and simplified, yields:

〈AN 〉 ∼
N→∞

γ

γ − 1

(
C

γ

) 2
γ




(
2

(
1 − 1

γ

))
N

2
γ . (115)

This coincides with the result of Carnal [35].

4.3.4 Asymptotic Results for General Isotropic Case

The large N asymptotic analysis for a general isotropic distribution, both for the mean
perimeter and the mean area, can be done following the details presented in the above two
examples. We just provide a summary here without repeating the details.

4.3.5 Average Perimeter

– Exponential tails (p(x, y) ∼ Ae−(x2+y2)α/2
when (x2 + y2) → ∞)

〈LN 〉 ∼ 2π log1/α N.
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– Power-law tails (p(x, y) ∼ A

(x2+y2)
(
γ+1

2 )
):

〈LN 〉 ∼ 2π

(
AB( 1

2 ,
γ+1

2 )

γ

) 1
γ




(
1 − 1

γ

)
N

1
γ ,

where B(x, y) is the beta function.
– Truncated tails (p(x, y) ∼ A(a − √

x2 + y2)γ−1):

〈LN 〉 ∼ 2π

(
a − f (a, γ )

N
2

2γ+1

)
,

with

f (a, γ ) = (γ + 1
2 )

1−2γ
1+2γ 
( 2

1+2γ
)

(2A
√

2a)
2

1+2γ

.

Therefore, we do find as expected the distinction between the three different universal-
ity classes of extreme-value statistics. The sets of independent points drawn from distribu-
tions with exponential tails have, on average when N becomes large, a convex hull whose
perimeter increases more slowly (in powers of logN ) than sets drawn from distribution with
power-law tails (for which the growth of the perimeter is in powers of N ), which reveals the
lesser probability of having points very far from the origin in exponential-tailed distributions
than in power-law tailed distributions.

4.3.6 Average Area

– Exponential tails:

〈AN 〉 ∼ π log
2
α N.

– Power-law tails:

〈AN 〉 ∼ π

(
γ

γ − 1

)(
AB( 1

2 ,
γ+1

2 )

γ

) 2
γ




(
2 − 2

γ

)
N

2
γ .

– Truncated tails:

〈AN 〉 ∼ πa2

(
1 − 8 f (a, γ )

3 N
2

2γ+1

)
,

with

f (a, γ ) = (γ + 1
2 )

1−2γ
1+2γ 
( 2

1+2γ
)

(2A
√

2a)
2

1+2γ

.

We find for the area the same characteristics as for the perimeter as far as the relative
growths of convex hulls are concerned, depending on the shape of the initial distribution of
the points. It is particularly worth noting that, in the case of exponential-tailed distributions,
the asymptotic behavior of the average perimeter and area of the convex hull correspond to
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the geometrical quantities of a circle centered on the origin and with radius log
1
α N (α being

the characteristic exponent of the initial distribution’s exponential tails).6

4.4 A Non-isotropic Case: Points Distributed Uniformly in a Square

Let us now examine a non-isotropic case: computing the average perimeter of the convex
hull of N independent points distributed uniformly in a square of side a. The bivariate
probability density of the sample can be written as:

p(x, y) = 1

a2
�

(
a2

4
− x2

)
�

(
a2

4
− y2

)
, (116)

where � is the Heaviside step function.
We will consider, as described in the introductory part of this section, the projection of

the sample on the line through the origin making an angle θ with the x-axis. We write the
random variable corresponding to the projection of a sample point z ≡ x cos θ + y sin θ . Its
density will be given by:

q(z) = 1

a2

∫ ∫ a
2

− a
2

δ(z − x cos θ − y sin θ)�

(
a2

4
− x2

)
�

(
a2

4
− y2

)
dx dy, (117)

where δ is the Dirac delta function.
Using the symmetry of the square, we can focus on 0 ≤ θ ≤ π

4 and write

x = z − y sin θ

cos θ
.

This enables us to simplify (117):

q(z) = 1

a2 cos θ

∫ a
2

− a
2

�

(
a2

4
−

(
z − y sin θ

cos θ

)2)
�

(
a2

4
− y2

)
dy. (118)

Enforcing the condition that any point of the sample lies inside the square and thus making
the Heaviside functions non-zero, we have:

(i) −a

2
≤ y ≤ a

2
, (119)

(ii) −a

2
≤ z − y sin θ

cos θ
≤ a

2
, (120)

∴ max

(
−a

2
,
z − a

2 cos θ

sin θ

)
≤ y ≤ min

(
a

2
,
z + a

2 cos θ

sin θ

)
(121)

and:

−a

2
(cos θ + sin θ) ≤ z ≤ a

2
(cos θ + sin θ). (122)

There will be 3 cases:

6This is to be compared with Geffroy’s results [66], p. 957.
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1. For

−a

2
(cos θ + sin θ) ≤ z ≤ a

2
(sin θ − cos θ),

the y-coordinate will vary between − a
2 and

z+ a
2 cos θ

sin θ
and therefore:

q(z) = z + a
2 (cos θ + sin θ)

a2 cos θ sin θ
. (123)

2. For
a

2
(sin θ − cos θ) ≤ z ≤ a

2
(cos θ − sin θ),

the y-coordinate will vary between − a
2 and a

2 and therefore:

q(z) = 1

a cos θ
. (124)

3. For
a

2
(cos θ − sin θ) ≤ z ≤ a

2
(cos θ + sin θ)

the y-coordinate will vary between
z− a

2 cos θ

sin θ
and a

2 and therefore:

q(z) =
a
2 (cos θ + sin θ) − z

a2 cos θ sin θ
. (125)

To lighten the notation, let us write henceforth:

aθ = a

2
(cos θ + sin θ), (126)

bθ = a2 cos θ sin θ. (127)

Denoting as before by MN(θ) the value of the support function of the sample at angle θ ,
that is, the value of the maximal projection on direction θ , we have:

〈MN(θ)〉 =
∫ aθ

−aθ

zF ′
θ,N (z) dz (128)

= [zFθ,N (z)]aθ−aθ
−

∫ aθ

−aθ

Fθ,N (z) dz (129)

= aθ − Iθ , (130)

where:

Fθ,N (z) =
[∫ z

−aθ

q(z′) dz′
]N

, (131)

Iθ =
∫ aθ

−aθ

Fθ,N (z) dz. (132)
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To compute Iθ we make use of our knowledge of q(z) (see (123), (124), (125)) and we
obtain:

〈MN(θ)〉 = aθ − sin θ tanN θ

2N−1(2N + 1)
− cos θ

2N(N + 1)
[(2 − tan θ)N+1 − tanN+1 θ ]

− √
bθ tan θ 2F1

(
1

2
,−N; 3

2
; tan θ

2

)
, (133)

2F1 being a hypergeometric function.
Using known facts about the asymptotic behavior of hypergeometric series [1], 〈MN(θ)〉

can be seen to behave in the following way for large N :

〈MN(θ)〉 ∼ aθ −
√

πbθ

2N
+ o

(
1√
N

)
. (134)

This then yields the desired result:

〈LN 〉 = 8
∫ π

4

0
〈MN(θ)〉 (135)

∼ 4a

(
1 − π


( 3
4 )


( 1
4 )

√
N

)
. (136)

This is the same as Rényi and Sulanke’s [133], which they obtained from a different ap-
proach. Note that, as in the case of points distributed uniformly inside a disk, the average
perimeter of the convex hull tends to that of the boundary of the support—here 4a, the
perimeter of the square—when the number N of points becomes large. However, the con-
vergence here is slower than for a support with a smooth boundary like the disk: N− 1

2 versus
N− 2

3 . One can think that, physically and statistically, it is somehow “more difficult” for the
points of the sample to reach inside the corners of the square, making the convergence of
the convex hull towards the square all the more slower.

5 Correlated Points: One or More Brownian Motions

As mentioned before, one of the advantages of the support function approach that we use
in this paper is its generality: it can be applied to samples with correlations as well as to
samples of independent points. In this section, we study, using this method, the convex hull
of n planar Brownian paths, a topic that has so far been considered only in the n = 1 case
[58, 72, 73, 101, 152].

Beyond its interest from a theoretical point of view, the study of the convex hull of n

planar Brownian paths can be motivated by a question of particular relevance to the conser-
vation of animal species in their habitat, as we shall see before giving the details of results.

5.1 Planar Brownian Paths and Home-Range

A question that ecologists often face, in particular in designing a conservation area to pre-
serve a given animal population [119], is how to estimate the home-range of this animal
population. Roughly speaking this means the following. In order to survive over a certain
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Fig. 5 Convex hull of a 7-step
random walk

Fig. 6 Convex hull of planar
Brownian motion

length of time, the animals need to search for food and hence explore a certain region of
space. How much space one needs to assign for a group of say n animals? For instance, in
the case of species having a nest to which they return, say, every night, the “length of time”
is just the duration of a day. In ecology, the home range is simply defined as the territory
explored by the herd during its daily search for food over a fixed length of time. Different
methods are used to estimate this territory, based on the monitoring of the animals’ posi-
tions [68, 160]. One of these consists in simply the minimum convex polygon enclosing all
monitored positions, called the convex hull. While this may seem simple minded, it remains,
under certain circumstances, the best way to proceed [21].

The monitored positions, for one animal, will appear as the vertices of a path whose
statistical properties will depend on the type of motion the animal is performing. In partic-
ular, during phases of food searching known as foraging, the monitored positions can be
described as the vertices of a random walk in the plane [12, 16, 56]. For animals whose
daily motion consists mainly in foraging, quantities of interest about their home range, such
as its perimeter and area, can be estimated through the average perimeter and area of the
convex hull of the corresponding random walk (Fig. 5). If the recorded positions are numer-
ous (which might result from a very fine and/or long monitoring), the number of steps of the
random walker becomes large and to a good approximation the trajectory of a discrete-time
planar random walk (with finite variance of the step sizes) can be replaced by a continuous-
time planar Brownian motion of a certain duration T (Fig. 6).

The home range of a single animal can thus be characterized by the mean perimeter and
area of the convex hull of a planar Brownian motion of duration T starting at origin O .
Both ‘open’ (where the endpoint of the path is free) and ‘closed’ paths (that are constrained
to return to the origin in time T ) are of interest. The latter corresponds, for instance, to an
animal returning every night to its nest after spending the day foraging in the surroundings.
As we have seen in our review of existing results, the average perimeter and area of the
convex hull of an open Brownian path are known [58, 152], as is the average perimeter
for a closed path [72]. It seems natural and logical to seek an extension of these results to
an arbitrary number of paths (Fig. 7), both from a theoretical point of view and from an
ecological one, since many animals live in herds. We show first how to use the support-
function method for n = 1 planar Brownian paths and then for n > 1.



Random Convex Hulls and Extreme Value Statistics 987

Fig. 7 Convex hull of 3
independent, closed Brownian
paths, starting at the origin O

5.2 Convex Hull of a Planar Brownian Path

We consider here a planar Brownian path of duration T , starting from the origin O:

B(τ ) = (x(τ ), y(τ ))

with

0 ≤ τ ≤ T ,

x(τ ) and y(τ) being standard 1-dimensional Brownian motions of duration T obeying the
following Langevin equations:

ẋ(τ ) = ηx(τ )

and

ẏ(τ ) = ηy(τ )

where ηx(τ ) and ηy(τ ) are independent Gaussian white noises, with zero mean and delta-
correlation:

〈η.(τ )η.(τ
′)〉 = δ(τ − τ ′).

Let us note incidentally that this implies:

〈x2(τ )〉 = τ

and

〈y2(τ )〉 = τ. (137)

Fix a direction θ . We use as before (see (47) and (48)) the projection on direction θ :

zθ (τ ) = x(τ) cos θ + y(τ) sin θ

and

hθ (τ ) = −x(τ) sin θ + y(τ) cos θ.

Now, zθ and hθ are two independent 1-dimensional Brownian motion (each of duration T ),
parametrized by θ . It thus appears that M(θ) is simply the maximum of the 1-dimensional
Brownian motion zθ (τ ) on the interval τ ∈ [0, T ], i.e.,

M(θ) = max
τ∈[0,T ]

[zθ (τ )].
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Fig. 8 (a) Time τ∗ when the maximum M(θ) of zθ (τ ) is attained and (b) corresponding value
M ′(θ) = hθ (τ∗)

Furthermore, if we write τ ∗ the time at which this maximum is attained, then:

M(θ) = zθ (τ
∗) = x(τ ∗) cos θ + y(τ ∗) sin θ.

Deriving with respect to θ gives:

M ′(θ) = −x(τ ∗) sin θ + y(τ ∗) cos θ = hθ (τ
∗).

In words, if M(θ) is the maximum of the first Brownian motion zθ (τ ), M ′(θ) corresponds
to the value of the second, independent motion hθ (τ ) at the time τ = τ ∗ when the first one
attains its maximum. (cf. Figs. 8(a) and 8(b)).

In particular, when θ = 0, z0(τ ) = x(τ) and h0(τ ) = y(τ), and M(0) is then the maxi-
mum of x(τ) on the interval τ ∈ [0, T ] while M ′(0) = y(τ ∗) is the value of y at the time τ ∗
when x attains its maximum.

Recall that in isotropic cases, Cauchy’s formulae (see (51) and (52)) simplify to:

〈L〉 = 2π〈M(0)〉, (138)

〈A〉 = π(〈[M(0)]2〉 − 〈[M ′(0)]2〉). (139)

The planar motion that we are considering here is assumed to be isotropic and we will thus
use this version of the formulae.

The distribution of the maximum of a 1-dimensional Brownian motion x(τ) on [0, T ] is
known, and given by the cumulative distribution function:

F(M) = Prob[M(0) ≤ M] = erf

(
M√
2T

)
, (140)

with

erf(z) = 2√
π

∫ z

0
e−u2

du.

The first two moments of this distribution are readily computed:

〈M(0)〉 =
√

2T

π



Random Convex Hulls and Extreme Value Statistics 989

and

〈[M(0)]2〉 = T .

Equation (138) then yields the average perimeter of the convex hull of a planar Brownian
path,

〈L〉 = √
8πT . (141)

It is slightly more complex to compute the average area enclosed by the convex hull as
one then needs to compute 〈[M ′(0)]2〉. Let us first recall (see (137)) that for a given τ ∗,

E[y2(τ ∗)] = τ ∗

(since y is a standard Brownian motion), the expectation being taken over all possible
realizations of y at fixed τ ∗. But τ ∗ is itself a random variable, since it is the time at
which the first process, x, attains its maximum. One therefore also has to average over
the probability density of τ ∗ (which is given by Lévy’s celebrated arcsine law: ρ1(τ

∗) =
[τ ∗(T − τ ∗)]−1/2/π ); this leads to:

〈[M ′(0)]2〉 = 〈τ ∗〉 = T/2;
whence one obtains, via (139), the exact expression for the average area enclosed by the
convex hull of the motion:

〈A〉 = πT

2
. (142)

If we now consider a closed Brownian path in the plane, that is, one constrained to return
to the origin after time T , the reasoning is completely similar, but for x(τ) and y(τ) which
are now Brownian bridges of duration T : both start from the origin and are constrained to
return to it at time T :

x(0) = x(T ) = 0,

y(0) = y(T ) = 0.

The distribution of the maximum of a Brownian bridge is also known, and its first two
moments are given by:

〈M(0)〉 =
√

πT

8

and

〈[M(0)]2〉 = T

2
.

Equation (138) gives us as before the average perimeter of the convex hull:

〈L〉 =
√

π3T

2
. (143)

To compute the average area enclosed by the convex hull y(τ), let us first note that for a
Brownian bridge, at a fixed time τ ∗:

E[y2(τ ∗)] = τ ∗(T − τ ∗)
T

.
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Let us then recall another well-known result: the probability density of τ ∗ is uniform. Thus,
averaging on τ ∗, with uniform distribution ρ1(τ

∗) = 1/T , we obtain:

〈M ′(0)2〉 = 〈y2(τ ∗)〉 = T

6
.

Finally, as before, (139) leads us to an exact expression for the average area enclosed by the
convex hull of a 2d Brownian bridge:

〈A〉 = πT

3
. (144)

Results (141) and (142) had been computed by M. El Bachir [58], using the same ap-
proach as here, hinted at by L. Takács [152]. Equation (143) is given by A. Goldman. The
last result, (144), is, to the best of our knowledge, new, as are those in the next paragraph,
regarding the convex hull of several planar Brownian motions.

5.3 Convex Hull of n Planar Brownian Paths

As mentioned earlier, the method can then be generalized to n independent planar Brown-
ian paths, open or closed. We now have two sets of n Brownian paths: xj (τ ) and yj (τ )

(j = 1,2, . . . , n). All paths are independent of each other. Since isotropy holds, we can
still use (138) and (139), except that M(0) now denotes the global maximum of a set
of n independent one dimensional Brownian paths (or bridges for closed paths) xj (τ )

(j = 1,2, . . . , n), each of duration T ,

M(0) = max
1≤j≤n

max
0≤τ≤T

[x1(τ ), x2(τ ), . . . , xn(τ )]. (145)

Let j∗ and τ ∗ denote the label of the path and the time at which this global maximum is
achieved. Then, using argument similar to the n = 1 case, it is easy to see that M ′(0) =
yj∗(τ

∗), i.e., the position of the j∗-th y path at the time when the x paths achieve their global
maximum.

To compute the first two moments of M(0), we first compute the distribution Pn[M(0), T ]
of the global maximum of n independent Brownian paths (or bridges) xj (τ ). This is a stan-
dard extreme value calculation.

5.4 Open Paths

Consider first n open Brownian paths. It is easier to compute the cumulative probability,

Fn(M) = Prob[M(0) ≤ M].
Since the Brownian paths are independent, it follows that

Fn(M) = [F(M)]n,
where

F(M) = erf

(
M√
2T

)

for a single path mentioned before.
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Knowing this cumulative distribution Fn(M(0)), the first two moments 〈M(0)〉 and
〈[M(0)]2〉 can be computed for all n. Using the result for 〈M(0)〉 in (138) gives us the
mean perimeter, 〈Ln〉 = αn

√
T with

αn = 4n
√

2π

∫ ∞

0
duue−u2 [erf(u)]n−1. (146)

The first few values are:

α1 = √
8π = 5.013..,

α2 = 4
√

π = 7.089..,

α3 = 24
tan−1(1/

√
2)√

π
= 8.333..

(see Fig. 11 for a plot of αn vs. n).
For large n, one can analyse the integral in (146) by the saddle point method giving:

αn ∼ 2π
√

2 logn. (147)

(Details of the analysis are given in Appendix C.)
This logarithmic dependence on n is thus a direct consequence of extreme value statis-
tics [77] and the calculation of the mean perimeter of the convex hull of n paths is a nice
application of the extreme value statistics.

To compute the mean area, we need to calculate 〈[M ′(0)]2〉 in (139). We proceed as in
the n = 1 case. For a fixed label j and fixed time τ :

E[y2
j (τ )] = τ,

which follows from the fact that yj (τ ) is simply a Brownian motion. Thus:

E[y2
j∗(τ

∗)] = τ ∗.

Next, we need to average over τ ∗ which is the time at which the global maximum in (145)
happens. The probability density ρn(τ

∗) of the time τ ∗ of the global maximum of n in-
dependent Brownian motions (each of duration T ), to our knowledge, is not known in the
probability literature. We were able to compute this exactly for all n (details are given in
Appendix B). We find that

ρn(τ
∗) = 1

T
fn(τ

∗/T )

where the scaling function fn(z) is given by

fn(z) = 2n

π
√

z(1 − z)

∫ ∞

0
dx xe−x2 [erf(x

√
z)]n−1. (148)

A plot of fn(z) for various values of n is given in Fig. 9.
It is easy to check that for n = 1, it reproduces the arcsine law mentioned before.
Averaging over τ ∗ drawn from this distribution, we can then compute

〈[M ′(0)]2〉 =
∫ T

0
τ ∗ρn(τ

∗) dτ ∗.
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Fig. 9 Probability density fn(t)

of the time t at which the global
maximum of n Brownian
motions, each of unit duration, is
attained, as given by the formula
in (148). The 5 curves
correspond respectively to n = 1
(circles), n = 2 (squares), n = 5
(diamonds), n = 10 (upward
triangles) and n = 50 (downward
triangles)

Substituting this in (139) gives the exact mean area for all n, 〈An〉 = βnT with

βn = 4n
√

π

∫ ∞

0
duu[erf(u)]n−1(ue−u2 − g(u)) (149)

where

g(u) = 1

2
√

π

∫ 1

0

e−u2/t dt√
t (1 − t)

.

For example, the first few values are given by:

β1 = π/2 = 1.570.., (150)

β2 = π = 3.141.., (151)

β3 = π + 3 − √
3 = 4.409.. (152)

(Fig. 11 shows a plot of βn vs. n).
The large-n analysis (details in Appendix C) gives:

βn ∼ 2π lnn. (153)

5.5 Closed Paths

For n closed Brownian planar paths one proceeds in a similar way. The differences are:

– the cumulative distribution function of the maximum of a single 1-dimensional motion is
not given by (140) but by:

F(M) = 1 − e− 2M2
T

– the propagator of the 1-dimensional motion obtained by projection on the x-axis is that
of a Brownian bridge and so:

E[y2
j∗(τ

∗)] = τ ∗(T − τ ∗)
T
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Fig. 10 Probability density
gn(t) of the time t at which the
global maximum of n Brownian
bridges, each of unit duration, is
attained, as given by the formula
in (154). The 6 curves
correspond respectively to n = 1
(circles), n = 2 (squares), n = 5
(diamonds), n = 10 (upward
triangle) and n = 50 (downward
triangle) and n = 100
(right-pointing triangles)

• the probability density of the time τ ∗ at which the maximum of n 1-dimensional Brownian
bridges occurs is given by (see details in Appendix B):

ρn(τ
∗) = 1

T
gn

(
τ ∗

T

)

where the scaling function gn(z) is given by

gn(z) = 4n√
π

∫ ∞

0
u2e−u2 [1 − e−4u2z(1−z)]n−1 du. (154)

A plot of gn(z) for different n is given in Fig. 10.
Following then the same route as for open paths, we find that the mean perimeter and

area are given by:

〈Ln〉 = αn(c)
√

T

and

〈An〉 = βn(c)T

where, for all n,

αn(c) = π3/2

√
2

n∑

k=1

(
n

k

)
(−1)k+1

√
k

, (155)

βn(c) = π

2

[
n∑

k=1

1

k
− n

3
+ 1

2

n∑

k=2

(−1)kf (k)

]
(156)

and

f (k) =
(

n

k

)
(k − 1)−3/2(k tan−1(

√
k − 1) − √

k − 1).

The first few values are:

α1(c) =
√

π3/2 = 3.937..,
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Fig. 11 (Color online) Setting
T = 1, the analytical results for
average perimeter αn [(146), in
red] and area βn [(149), in green]
of n open Brownian paths, and
similarly the average
perimeter αn(c) [(155), in brown]
and area βn(c) [(156), in purple]
of n closed Brownian paths,
plotted against n. The symbols
denote results from numerical
simulations (up to n = 10, with
103 realizations for each point)
triangles down for an triangles
up for βn squares for αn(c)

diamonds for βn(c)

α2(c) = √
π3(

√
2 − 1/2) = 5.090..,

α3(c) = √
π3(3/

√
2 − 3/2 + 1/

√
6) = 5.732..

and

β1(c) = π/3 = 1.047.., (157)

β2(c) = π(4 + 3π)/24 = 1.757.., (158)

β3(c) = 2.250.. (159)

(see Fig. 11 for a plot of αn(c) and βn(c) vs. n).
Large n analysis (details in Appendix C) shows that:

αn(c) ∼ π
√

2 lnn (160)

and

βn(c) ∼ π

2
lnn, (161)

smaller respectively by a factor 1/2 and 1/4 than the corresponding results for open paths—
as one’s intuition might suggest, given that a closed path is enforced to return to the origin.

5.6 Numerical Simulations and Discussion

We illustrate our analytical results on the convex hull of planar Brownian motion with some
elementary numerical simulations. These require first to generate Brownian paths, and then
to compute numerically the convex hull of the paths. Here we have used a simple algorithm
known as Graham scan [74].7

Let us recall the asymptotic behaviors of the exact formulae plotted in Fig. 11, which are
given by (147), (153), (160) and (161).

7This algorithm is not the quickest one, but our aim was mainly illustrative. The question of convex-hull-
finding algorithms is a classic one in computer science [51, 143].
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For n open Brownian paths:

〈Ln〉 ∼ 2π
√

2T lnn, (162)

〈An〉 ∼ 2πT lnn; (163)

and for n closed Brownian paths:

〈L(c)
n 〉 ∼ π

√
2T lnn, (164)

〈A(c)
n 〉 ∼ π

2
T lnn. (165)

In both cases, the ratio between the average value of the area of the convex hull and the
square of the average value of the perimeter takes, asymptotically, the same value as in the
case of a circle:

〈An〉
〈Ln〉2

�
n→∞

1

4π
. (166)

Thus, heuristically speaking, for large n, the convex hull of n planar Brownian paths ap-
proaches a circle, centered at the origin, whose radius is obtained dividing 〈Ln〉 by 2π :

Rn = √
2T lnn (167)

for n open paths; and:

R(c)
n =

√
T lnn

2
(168)

for n closed paths.
Note that for finite n the shape of the convex hull is far from being a circle. It is only in

the n → ∞ limit that it approaches a circle. Roughly speaking, a large number of trajectories
smoothen their global convex hull into a circular shape.

Let us also make another observation. In the limit of large n, the prefactor for the average
area of the convex hull of n open Brownian paths, namely logn, is identical not only to that
of the average area of the convex hull of n independent points drawn each from a Gaussian

distribution ρ(x, y) ∝ e− x2+y2

2 , but also to that of the number of distinct sites visited by n

independent random walkers on a lattice.8 Indeed the number of distinct sites visited by n

independent walkers on a lattice (e.g. Z
2) has been studied systematically by H. Larralde

et al. [93, 94] (see also [2]). For n lattice walks (n � 1) each of k step (steps are only
allowed to neighborings sites), Larralde et al. have identified three regimes according to the
value of k. For the second of these regimes, the intermediate one, the system is in a sort of
diffusive state so that the number of distinct sites visited 〈Sn(k)〉 grows like the area of the
disk of radius

√
k, that is, proportionally to k, with a prefactor logn. In this regime, Acedo

and Yuste [2] describe the explored territory as “a corona of dendritic nature [characterized
by filaments created by the random walkers wandering in the outer regions] and an inner
hyperspherical core [where there is much overlapping].” (cf. Fig. 13).

The detailed transposition between lattice-walk models and ours (n planar Brownian
motions of fixed duration T ) requires much care,9 but it is interesting to note that in the

8We thank Hernán Larralde for drawing our attention to this point.
9In particular because of the transition to both continuous time (that is an infinite number of steps) and
continuous space (a lattice constant that tends to 0).
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Fig. 12 Convex hull of 10 open Brownian paths (Paths are independent and start from the origin)

Fig. 13 Figure from Acedo and
Yuste [2]: “A snapshot of the set
of sites visited by n = 1000
random walkers on the
two-dimensional lattice. The
visited sites are in white, the
unvisited ones are in black and
the internal gray points are the
random walkers. The outer white
circle is centered on the starting
point of the random walkers and
its radius is the maximum
distance from that point reached
by any walker at the time the
snapshot was taken. The internal
black circle is concentric with the
former but its radius is the
distance between the origin and
the nearest unvisited site”

intermediate regime, the number of distinct sites visited by n independent lattice walkers
grows like a circle with the same radius as that of the convex hull of n planar Brownian
paths.
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6 Conclusion

The method presented in this paper, based on the use of support functions and Cauchy
formulae, allows one to treat, in a general way, random convex hull problems in a plane,
whether the random points considered are independent or correlated. Our work makes an
important link between the two-dimensional convex hull problem and the subject of extreme
value statistics.

We have shown here how this method can be implemented successfully in the case of
independent points in the plane and when the points are correlated as in the case when the
points represent the positions of a planar Brownian motion of a given fixed duration T .
This method should be adaptable to treat other types of random paths, such as discrete-time
random walks or anomalous diffusion processes such as Lévy flights.

In addition, we have shown how to suitably generalize this method to compute the mean
perimeter and the mean area of the global convex hull of n independent Brownian paths.
Our work leads to several interesting open questions:

– For example, can one go beyond the first moment and compute, for instance, the full
distribution of the perimeter and the area of the convex hull of n independent Brownian
paths?

– For a single random walker of N steps, the average number of vertices of its convex hull
is known from Baxter’s work [13]: 〈FN 〉 = 2(1 + 1/2 + 1/3 + · · · + 1/N) ∼ 2 log(N)

for large N . It remains an outstanding problem to generalize this result to the case of the
convex hull of n independent random walkers each of N steps.

– Furthermore, we have only studied the convex hull of n independent Brownian paths.
However, in many situations, the animals interact with each other leading to collective
behavior such as flocking. It would thus be very interesting to study the effect of interac-
tion between walkers on the statistics of their convex hull.

– Finally, it would be interesting to study the statistics of the convex polytope associated
with Brownian paths (one or more) in 3 dimensions. Let us remark that Cauchy’s formula
exist in higher dimensions and that it is possible to apply a method similar to the one
developed here in order to compute the average surface area.10 Note that for i.i.d. points
each distributed uniformly over a ball of unit radius in d-dimensions, there exists exact
results for the distribution of the diameter of the convex polytope (see [116] and references
therein).

Acknowledgements We wish to thank D. Dhar , H. Larralde and B. Teissier for useful discussions.

Appendix A: Proof of Cauchy’s Formulae

We give here a quick “proof” of Cauchy’s formulae:11

L =
∫ 2π

0
M(θ)dθ, (169)

A = 1

2

∫ 2π

0
(M2(θ) − (M ′(θ))2) dθ. (170)

10Details will be published elsewhere.
11We thank Deepak Dhar for suggesting the idea of this demonstration.
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Fig. 14 (Color online) Portion
of a polygonal curve (in red) near
one of its vertices (A), with the
lines through the origin
perpendicular to the curve
before A and after A (in green),
together with the line of
direction θ (in blue)

We consider a polygonal curve and, without loss of generality, examine the integrals
appearing in Cauchy’s formulae on a portion of the curve corresponding to the configuration
shown on Fig. 14.

On the interval θ ∈ [−φ1, φ2], the value of the support function of the polygonal curve
will be given by A. Writing R for the distance between the origin O and vertex A, we
therefore have:

M(θ) = R cos θ. (171)

The first of Cauchy’s formulae then gives:

L =
∫ φ2

−φ1

M(θ)dθ = R(sinφ1 + sinφ2), (172)

which is indeed the length of the curve (that is, H1A + AH2) between H1 and H2.
As for the second of Cauchy’s formulae, it gives:

A = 1

2

∫ φ2

−φ1

([M(θ)]2 − [M ′(θ)]2) dθ

= R2

2

∫ φ2

−φ1

[cos2 θ − sin2 θ ]dθ

= R2

2
(sinφ2 cosφ2 + sinφ1 cosφ1)

which is indeed the area of the polygon OH1AH2.
This proves the formulae for closed polygonal curves containing the origin. If the origin

is outside, one can see that the signs of the various terms will lead to cancellations and the
formulae will remain valid. Finally, taking the continuous limit yields the result for smooth
curves.

Appendix B: Time at Which the Maximum of n 1-Dimensional Brownian Motion Is
Attained

Let us write:

Prob(Mn = M,τ ∗ = τ) ≡ ρn(τ,M)dτ dM, (173)



Random Convex Hulls and Extreme Value Statistics 999

where:

– Mn is the global maximum of the n Brownian motions,
– τ ∗ is the time at which this global maximum is attained,
– ρn is the joint probability density function of Mn and τ ∗.

This probability can be written as the probability that one of the motions attains its max-
imum M at time τ and the n − 1 others all have a maximum which is less than M :

ρn(τ,M) = nρ1(τ,M)[F(M)]n−1, (174)

F(M) being, as before, the cumulative distribution function of the maximum of a single
Brownian motion on the interval [0, T ]:

F(M) = erf

(
M√
2T

)
.

The joint probability density function ρ1(τ,M) of the maximum M and the time τ at
which it happens can be computed using various techniques. The simplest of them is to
use the Feynman-Kac path integral method, but suitably adapted with a cut-off [103, 106].
This technique has recently been used [113, 124] to compute exactly the joint distribution
ρ1(τ,M) of a single Brownian motion, but subject to a variety of constraints, such as for
a Brownian excursion, a Brownian meander etc. The results are nontrivial [113] and have
been recently verified using an alternative functional renormalization group approach [139].
For a single free Brownian motion (the case here), this method can be similarly used and it
provides a simple and compact result

ρ1(τ,M) = M

πτ
3
2
√

T − τ
e− M2

2τ .

We then obtain the marginal distribution ρn(τ ) by integrating out M . It has the scaling form
ρn(τ ) = 1

T
fn(

τ
T
) where the scaling function fn(z) is given in (148) and is plotted, for various

values of n, in Fig. 9.
For Brownian bridges, the reasoning is exactly the same, but of course F(M) and ρ1

differ:

ρ1(τ,M) =
√

2T

π

M2

[τ(T − τ ] 3
2

e
− M2T

2τ (T −τ ) , (175)

F(M) = 1 − e− 2M2
T , (176)

which can both be derived using the technique we pointed to above [103, 105, 113, 124].
We then obtain ρn(τ ) = 1

T
gn(

τ
T
) where

gn(z) = 4n√
π

∫ ∞

0
u2e−u2 [1 − e−4u2 z (1−z)]n−1 du. (177)

Figure 10 shows a plot of gn(z) for different values of n.
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Appendix C: Asymptotic Behavior

C.1 Open Paths—Average Perimeter

Letting Mn be the maximum of n independent Brownian paths each of duration T , we write
Prob(Mn ≤ M) ≡ Fn(M). This can be expressed in terms of the cumulative distribution
function F1(M) = F(M) of the maximum of a standard one-dimensional Brownian motion:

Fn(M) = [F(M)]n

=
[

2√
π

∫ M√
2T

0
e−u2

du

]n

=
[

1 − 2√
π

∫ ∞

M√
2T

e−u2
du

]n

. (178)

In the limit when n and M become very large, (178) becomes:

Fn(M) ∼ exp

[
n ln

(
1 − 2√

π

∫ ∞

M√
2T

e−u2
du

)]

∼ exp

[
−n

2√
π

∫ ∞

M√
2T

e−u2
du

]
. (179)

Integrating by parts yields:

∫ ∞

M√
2T

e−u2
du =

√
T e− M2

2T√
2M

+ O(1). (180)

Inserting this into (179), one obtains:

Fn(M) ∼ e
−2n

√
T e−M2/2T

M
√

2π (181)

∼ e−e
− 1

2T
(M2−2T lnn)

. (182)

Here we write:

δ ≡ M − √
2T lnn,

assuming that δ vanishes at large n, as we will be able to check a posteriori. It follows that:

M2 = 2T lnn

(
1 + δ√

2T lnn

)2

∼ 2T lnn

(
1 + 2δ√

2T lnn

)
.

Hence:

M2 − 2T lnn ∼ 2δ
√

2T lnn = 2
√

2T lnn(M − √
2T lnn).

Inserting this into (182) yields:

Fn(M) ∼ e−e
−
√

2 lnn
T

(M−√
2T lnn)

. (183)
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Now, to compute the asymptotic behavior of Mn when n is large, let us start from:

〈Mn〉 =
∫ ∞

0
MF ′

n(M)dM

∼
∫ ∞

A

MF ′
n(M)dM (184)

where A � 1 will “disappear” at a later stage.
Combining this with (183), one obtains:

〈Mn〉 ∼
∫ ∞

A

M

√
2 lnn

T
e

−
√

2 lnn
T

(M−√
2T lnn)

e−e
−

√
2 logn

T
(M−√

2T lnn)

dM. (185)

Setting:

y =
√

2 lnn

T
(M − √

2T lnn)

one arrives at:

〈Mn〉 ∼
∫ ∞

√
2 lnn

T
(A−√

2T lnn)

(√
2T lnn + y

√
T

2 lnn

)
e−ye−e−y

dy. (186)

In the limit when n → ∞, this leads to:

〈Mn〉 ∼
∫ ∞

−∞

√
2T lnne−ye−e−y

dy

∼ √
2T lnn. (187)

Thus, the average perimeter of the convex hull of n Brownian paths in the plane behaves for
large n

〈Ln〉 ∼ 2π
√

2T lnn. (188)

C.2 Open Paths: Average Area

We wish to compute the asymptotical behavior (for n large) of the average area of the convex
hull of n open Brownian paths in the plane, all independent and of duration T . We apply
Cauchy’s formula (139) in the context of isotropic samples:

〈An〉 = π(〈M2
n〉 − 〈[M ′

n]2〉). (189)

The first term of the right-hand side is easily computed (it suffices to substitute M2 for M

in (185)):

〈M2
n〉 ∼ 2T lnn. (190)

To obtain (153), it thus remains to show that 〈An〉 is dominated by 〈M2
n〉. Recall (149):

〈An〉 = 4nT
√

π

∫ ∞

0
duu[erf(u)]n−1(ue−u2 − g(u)), (191)
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where

g(u) = 1

2
√

π

∫ 1

0

e−u2/τ dt√
τ(1 − τ)

.

The integral in (191) is dominated by the contribution from the large-u part. Therefore, we
examine in this limit:

∫ 1

0
dτ

1√
τ(1 − τ)

e− u2
τ . (192)

Setting τ = 1 − y:

∫ 1

0
dτ

1√
τ(1 − τ)

e− u2
τ =

∫ 1

0
dy

1√
y(1 − y)

e
− u2

1−y (193)

∼
∫ 1

0
dy

1√
y(1 − y)

e−u2(1+y) (194)

∼ e−u2
∫ 1

0
dy

1√
y(1 − y)

e−yu2
. (195)

We now write:

z = u
√

y.

This leads to:
∫ 1

0
dτ

1√
τ(1 − τ)

e− u2
τ ∼ e−u2

∫ u

0

2z dz

u2

1√
z2

u2 (1 − z2

u2 )

e−z2

∼ 2e−u2

u

∫ u

0
dz

1√
1 − z2

u2

e−z2

∼ 2e−u2

u

∫ u

0
dz

(
1 + z2

2u2

)
e−z2

∼ e−u2

u

√
πerf(u) + e−u2

u

∫ u

0
dz

z2e−z2

u2
.

An integration by parts shows that the second term on the right-hand side is o( e−u2

u2 ), whence:

∫ 1

0
dτ

1√
τ(1 − τ)

e− u2
τ ∼

√
πe−u2

u
. (196)

Returning to (191), where the integral is dominated by the contribution from the large u

part, we have:

〈An〉 = 4nT
√

π

∫ ∞

0
duu[erf(u)]n−1(ue−u2 − g(u)) (197)

∼ 4nT
√

π

∫ ∞

0
duu[erf(u)]n−1

(
ue−u2 − e−u2

2u

)
(198)
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∼ 4nT
√

π

∫ ∞

0
duu2[erf(u)]n−1e−u2

(199)

∼ π〈M2
n〉 (200)

∼ 2πT lnn. (201)

C.3 Closed Paths: Average Perimeter

The calculation is analogous to that of Sect. C.1; indeed, the only difference is that the
cumulative distribution function Fn of the maximum M of n one-dimensional Brownian
bridges is given by:

Fn(M) = [1 − e− 2M2
T ]n. (202)

In the limit when n and M become very large, we then have:

Fn(M) ∼ exp

[
n ln

(
1 − e− 2M2

T

)]

∼ e−e
− 2

T
(M2− T

2 lnn)

. (203)

We retrieve here the same equation as (182), where T is replaced by T
4 . We can thus deduce

the result given in (160):

〈Ln〉 ∼ π
√

2T lnn. (204)

C.4 Closed Paths: Average Area

We wish to compute the asymptotic behavior (for n large) of the average area of the convex
hull of n closed Brownian paths in the plane, all independent and of duration T . The analysis
is similar to that of Sect. C.2. We apply Cauchy’s formula (139) in the context of isotropic
samples:

〈An〉 = π(〈M2
n〉 − 〈[M ′

n]2〉). (205)

The first term on the right-hand side is, as before, easily computed from Sects. C.3 and C.1:

〈M2
n〉 ∼ T

2
lnn. (206)

We now show that 〈An〉 is dominated by 〈M2
n〉. The equivalent of (191) for closed paths

is:

〈An〉 = 2nT√
π

∫ ∞

0
duu2(1 − e−u2

)n−1(ue−u2 − g(u)), (207)

where:

g(u) = 1

8

∫ 1

0
dτ

e
− u2

4τ (1−τ )√
τ(1 − τ)

.

The integral in (207) is dominated by the contribution from the large-u part. Therefore, we
examine g(u) in this limit.

g(u) = 1

8

∫ 1

0
dτ

e
− u2

4τ (1−τ )√
τ(1 − τ)

, (208)
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= 1

4

∫ 1
2

0
dτ

e
− u2

4τ (1−τ )√
τ(1 − τ)

. (209)

We now write:

τ = 1

2
− z.

This leads to:

1

4

∫ 1
2

0
dτ

e
− u2

4τ (1−τ )√
τ(1 − τ)

= 1

2

∫ 1
2

0
dz

e
− u2

1−4z2

√
1 − 4z2

.

Setting:

v = 2uz,

then yields:

1

2

∫ 1
2

0
dz

e
− u2

1−4z2

√
1 − 4z2

= 1

4

∫ u

0

dv

u

e

− u2

1− v2

u2

√
1 − v2

u2

∼ 1

4

e−u2

u

∫ u

0
dve−v2

(
1 + v2

2u2

)

∼ e−u2

8u

√
πerf(u) + O

(
e−u2

u2

)
.

Returning to (207), where the integral is dominated by the contribution from the large-u
part, we therefore have:

〈An〉 = 2nT√
π

∫ ∞

0
duu2(1 − e−u2

)n−1(ue−u2 − g(u)) (210)

∼ 2nT√
π

∫ ∞

0
duu2(1 − e−u2

)n−1

(
ue−u2 −

√
πe−u2

8u

)
(211)

∼ 2nT√
π

∫ ∞

0
duu3(1 − e−u2

)n−1e−u2
(212)

∼ π〈M2
n〉 (213)

∼ πT

2
lnn. (214)
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